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Motivation for model-based persuasion

Persuasion often involves an expert providing an interpretation of observed data
—a model, a narrative, a relationship between state and data, etc.
® Debate on climate change/statistical facts/politics
® The defense and prosecution base their cases on the same evidence

® Engineers/mechanics provide different reasons for malfunctioning

DM seek/adopt expert's advice especially when data is surprising
® People initially interpret the data on their own

® Adopt a model that better fits the data

Does this mean Persuader should wait for unexpected data? J
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Motivation for timing decision

| focus on these aspects:
1. More data to come before DM chooses an action

2. Expert’s opportunity to give advice is limited

Expert often decides when to persuade: before/after observing more data J

3. Expert's interpretation needs to be consistent

e.g., (X) “This time is different”, “Last year was a special case”, etc.

Expert needs to provide a single model to interpret all data J

—a model = a data generating process
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Example

Expert (an auto mechanic) — Client (Garrett’s father)

| recently bought it, so | think my tractor is okay.
The noise is probably just random,
Rattling but | came to check if my tractor is okay.
Should | get a repair after this season ends?
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Example

Expert (an auto mechanic) — Client (Garrett's father)

| recently bought it, s | think my tractor i§ okay.
The noise is probably just random

but | came to check if my tractor|is okay.
Should | get a repair after this seasoq ends?
o
interpretation

Initial
data

Rattling
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Example

Expert (an auto mechanic) — Client (Garrett's father)

Ital {%} You must
nitia get a repair!
data

Rattling Mechanic

| don't
think so!
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Example
Expert (an auto mechanic) — Client (Garrett’s father)
& We should see if
Initial o, the noise continues.
data Come back after
Rattling Mechanic the season.
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Example

Expert (an auto mechanic) — Client (Garrett's father)

More
data

Initial
Rattling
sound

Rattling continues

:sound )

o

Mechanic

Su

You should
probably get
a repair.

Alright
then
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Example

Expert (an auto mechanic) — Client (Garrett’s father)

More
data See7 It's random! ]
Initial

STOPPED
Rattling Well, it's random only

when it's broken..®&

Mechanic
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Example

Expert (an auto mechanic) — Client (Garrett's father)

More Well, the first noise
data was because it was
Initial
O

broken but the noise

SOUND
. STOPPED stops if it's still broken
Rattlin
:sound

That doesn’t sound
so consistent
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Timeline

> True signal generating process fixed

P,

— »n
g

€

L W
N

R updates belief about state

A

Persuade NOW
S proposes a model
to interpret s;

R decides to adopt
the proposed model

using the proposed model

A .
and chooses an action

Persuade LATER
S proposes a model
to interpret (sq,S3)

R decides to adopt
the proposed model
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Prior Literature 1
KG (2011) Bayesian Persuasion

----- > True signal generating process chosen

True
state
g ;
' T R updates belief about state
Ho
Kamenica & Gentzkow (2011) and chooses an action

S publicly chooses the process
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Prior Literature 2

Schwartzstein and Sunderam (2021) Using Models to Persuade

----- > True signal generating process fixed

True i
state
n i
| i
§ R updates belief about state
o l using the proposed model

SS (2021) and chooses an action
S proposes a model
to interpret s

R decides to adopt
the proposed model

6/29



Prior Literature 2

Schwartzstein and Sunderam (2021) Using Models to Persuade

i====* Process 1 fixed | Process 2 fixed
True i
state : i
' | |
i v v
' 51 S2 =s R updates belief about state
o I l using the proposed model

SS (2021) and chooses an action
S proposes a model
to interpret s

R decides to adopt
the proposed model
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Trade off: Persuading “NOW" vs. “LATER"

If persuade LATER

Unexpected (surprising) data might arise = wait

® but it might indeed be unexpected — Say something now to prepare for the expected

Expected data might convince the receiver to take desired action = wait

® but it might convince him the other way = Say something now to prevent that
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Assumptions— Sender (expert) and Receiver (client)

Sender (expert) and Receiver (client)
e Both do NOT know the true state
e Both do NOT know the true model

® Both know that the two signals are drawn independently from a fixed process

Sender
® Knows the true model “conditional on each state”
® Can only propose a model once

® Can only propose a single model
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Assumptions— Receiver (client)

® Has a default model to interpret data

® Does NOT have a prior over models

® Adopts a proposed model if it generates the observed signal with higher likelihood
—a model that better “fits” the data

® Does NOT consider Sender’s incentives

® |imited recall

® Once the proposed model is adopted, it is never abandoned

® Once the default model is abandoned, it is never re-adopted

—the decision to adopt the proposal is taken immediately
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Research Question

Timing of persuading a boundedly rational Bayesian's beliefs

by manipulating her interpretation of two signals generated by the same process.

Is it always better to persuade after observing all signals? No.J

When? /How?

What matters:
® The prior belief
® Receiver's (default) interpretation of the first signal
* Sender’s expectation about the next signal

* What Receiver learns on his own from the first signal
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Outline

Model setup (binary case)

Period 2: Persuading LATER

Period 1: Expected payoff of persuading LATER

Period 1: Persuading NOW

NOW vs. LATER

® When Sender knows the next signal with certainty
® When Sender does NOT know the next signal with certainty
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Model Setup: Binary case

e State: w € Q = {Good, Broken}
® Receiver's prior belief pg € int(A(R)) Werye drawn from pg
e Signal: s € S = {Noise, =Noise}
® Model M: distributions of signals conditional on each state
(1(slw))seswea = (n(N|G), 7(N|B)) € [A(S)]?
® True model 7: (m7(N|G),m1(N|B))
® Receiver's default model D: (7wy(N|G),7q(N|B))

® Two signals (s1,5) € S? drawn independently from 7 |werye

® 53 = Noise is commonly observed .-+ Game begins
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Payoffs

Bayesian Receiver who observes s, (the second signal)

® updates belief g — p(s1, s2; M, po) using model M
—_—

posterior dist. over Q

Posterior belief about w = B

po(B)m(s1|B)m(s2|B)
wea Ho(W)m(s1|w)m(s2|w)

p(Blsi, s2; M, o) = 5 = Pr(Bls1, s2; M, po)
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Payoffs

Bayesian Receiver who observes s, (the second signal)

® updates belief g — p(s1, s2; M, po) using model M
—_—

posterior dist. over Q

® takes an action a € A that maximizes his expected utility

a*(S]_, 52; M7 I'I’O) € arg Tea/z( EM(UJ|S]_,52;M,H0) |:UR(a7 w)]
® Assume A = [0,1] and a*(s1, s2; M, po) = Pr(B|s1, s2; M, o)

Sender maximizes the receiver's posterior belief about w = B:

m/elxIE [Pr(B|s1, s2; M, mo)]  vs. m/\e/alx Pr(B|s1, s2; M, o)

N?)rW “LATER’

(Henceforth, omit po in every notation.)
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Objective of Analysis: NOW vs. LATER

When persuading “NOW", Receiver adopts M if
Model M's likelihood of s; is higher than that of the default model D

Pr(silM) =) po(w)r(silw) = Y po(w)ra(silw) = Pr(si|D)

weN weN

When persuading “LATER", Receiver adopts M if
Model M'’s likelihood of (51, sp) is higher than that of the default model D

Pr(si, 2| M) = Z po(w)m(st|w)m(s2|w) > Z to(w)my(si|w)mg(s2|w) = Pr(s1, s2|D)

weN weN

In both cases, Sender is proposing a model that better fits the observed data
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LATER problem

V(s1, ) = max Pr(B|s1, s, M) st. Pr(si, s/ M) > Pr(s1, s|D)

_ o(B)(s1|B)(s21B)
WS g Ho(w)m(st|w)m(s2]w)

Z ,U,o 51’00 Sz‘w) > Z ,uo 7Td sl\w)wd(sﬂw)

weR we
: m(s1|B)m(s2|B)
= —_ = t. Pr(s1,s2|M) > Pr(s1,s2|D
Solution = arg max (W(51|G)W(52]G) s r(s1, s2| M) r(s1,s2|D)
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LATER problem: Solution

Schwartzstein and Sunderam (2021)
If Sender can be inconsistent (propose a model for each period separately)

i (s1|B)n2(s,|B)
7t (s1|G)m2(s2| G)

i.e. argmax( ) st.  Pr(sy, s M, M®) > Pr(sy, 5|D)

M, MB2

° 7Tt1*(51|B)7Tt2*(52|B) = 100% V(Sl,SQ) € 82
® 1 (5|G)7™(sp|G) is as small as possible—binds the constraint

) _ oL 100y, Ho(B)
V(s1,52) = min { R Pr(51,52\D)}

Receiver finds the signals (s, s2) more surprising = better persuasion
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LATER problem: The cost of consistency

Mixed signals limit Sender’s ability to confidently link the data to the desired state

® The best Sender can do is “In bad state, the signals are purely random”

Corollary 1 (The cost of consistency)

If Sender has to be consistent (propose a single model),

L4 7T*(51|B)71’*($2|B) = 7T*(S1|B)(1 — 7T*(51|B)) = v50% if 51 75 So

. to(B) .
m 100%. — "7 fo =
n { OOA), Pr(51752‘,D)} IT 51 S

. 0 1 “O(B) .
min { 100%, 7 <—Pr(sl,52|D) if 51 # s

L V(Sl, 52) =
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LATER problem: Key Points

Receiver's surprise 1 (poor fit) = persuasion 1

The cost of being consistent

® mixed signals = persuasion | by 1/4

True model does not matter at all

What Receiver learns on his own from the first signal does not matter
® What matters is the “fit"
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NOW problem

® Expected payoff of waiting (i.e., entering the LATER problem)

ET[V(51,52)]
where Sender's (correct) expectation about s, conditional on s; based on 7

Pr(s1,%|T) _ 2wea to(W)mT(st|w)mT(s2|w)
Pr(s1|T) >weq Ho(w)mr(sw)

Pr(sz|s1,T) =

Detail structure of the True model does not matter

Denote the expectation of the next signal:

pT(s1) =Pr(s2 =s1ls1,T) and 1—p7(s1) =Pr(s2 # si|s1,T)
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NOW problem

® Payoff of persuading “NOW"

V(s1) =maxE,7 | Pr(Blsi, 2, M)| st Pr(si|M) > Pr(si/D)

—max 3" o7 (s [Z Ho(B)7(s1|B)r(s2|B) }

$€S wea Ho(w)m(st|w)m(s2|w)

st. Y po(w)m(silw) = ) po(w)ma(silw)

weN weN
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Maximal “NOW" Persuasion: convincing w = B with 100%

Proposition 1 (Maximal "NOW" Persuasion)

Sender can achieve maximal persuasion “NOW" if either

(a) po(B) > Pr(si|D) or (b) p7(s1) =0

(a) The prior is very favorable compared to how much the default model D fits s;

(b) Sender expects mixed signals (s1 # s) for certainty

When to stop acquiring more data

(a) also applies to “LATER" problem

¢ For any s at any point, uo(B) > Pr(s|D) is enough to stop acquiring more data
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Graphical lllustration: the set of all models

n(Noise|G)
1 —Noise = conclusive evidence of B
Noise = —Noise =
conclusive conclusive
evidence evidence
of G of G
o - - - o— m(Noise|B
0 Noise = conclusive evidence of B 1 ( |B)

® The set of all models

® Models on edges
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Graphical lllustration: the constraint

m(Noise|G)
1 —Noise = conclusive evidence of B
~
Noise = D —Noise = Pr(Noise|M) = Pr(Noise|D)
conclusive conclusive 1—10(B)
evidence p evidence ® Slope = — (%)
of G ft ) of G
/'76'
I~ ® Default model D
o O—> [
0 Noise = conclusive evidence of B 1 m(Noise|B)
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Graphical lllustration: Maximal Persuasion “NOW" (a)

n(Noise|G)

1 —Noise = conclusive evidence of B

N

Noise =
conclusive
evidence

of G

(e

- - - [}
Noise = conclusive evidence of B

8

—Noise =
conclusive
evidence
of G

;c1>—>1t(Noise|B)

Favorable prior

po(B) > Pr(Noise|D)

® The optimal model M*
7*(Noise|B) < 1
7*(Noise|G) =0

“Noise means red light! Just
as you suspected, this
tractor needs a repair for

sure.”
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Graphical lllustration: Maximal Persuasion “NOW" (b)

n(Noise|G)

1 —Noise = conclusive evidence of B
[ ]

Noise =
conclusive
evidence

of G

(e

8

—Noise =
conclusive
evidence
of G

O—> [
Noise = conclusive evidence of B 1 m(Noise|B)

Sender knows s, = —Noise

p” (Noise) = 0

® The optimal model M*
7*(Noise|B) < 1
m*(Noise|G) = 1

“Noise is probably nothing
serious. But if the noise ever
stops, that’s a flashing red
light.”
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When the sender knows s, = s;

Lemma 1 (Optimal model for “NOW" when Sender knows s, = s;)

Suppose p’ (s1) = 1. Then,

B
® V(sp) increases in %

® The optimal model for “NOW" is

7*(51|B) = 100% and *(s1|G) = max {0, Pf(slll?Lo—(g())(B)}

e 7*(s1|B) is as small as possible—binds the constraint
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When the sender knows s, = s;

n(Noise|G)
1 —Noise = conclusive evidence of B .
Q Sender knows s, = Noise
p” (Noise) = 100%
) ) ® The optimal model M*
Noise = —Noise = i
conclusive conclusive 7T*(NOISG|B) =1
evidence evidence . .. .
of G of G with binding constraint
n *
M 13 M) :
If it’s in good shape, you
should probably hear
NoiselB nothing”
O O—>
0 Noise = conclusive evidence of B m(Noise|B)
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NOW vs. LATER: When the sender knows s, = s;

Assumption 1 (Maximal "NOW" persuasion is not feasible)
/L()(B) < PI’(S]_lD)

Proposition 2 (NOW vs. LATER)
Suppose p7 (s1) = 1. Then, the followings are equivalent:

(a) “LATER" is better than “NOW"

ie., V(s1,s1) > V(s1)

SH=s1
(b) The optimal model for “NOW" is also feasible "LATER"

1+ mq4(s1|B)

(c) Pr(s1|D) < 5
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NOW vs. LATER: When the sender knows s, = s;

Corollary 2

“LATER” is better if either
1) po(B) < Pr(si|D) < 0.5
unfavorable prior but surprised = to-be very surprised
2) 0.5 < po(B) < Pr(s1|D)

favorable prior and not surprised = to-be not surprised (convinced about B)

“NOW?” is better if either
1) Pr(s1|D) < po(B)
Proposition 1 (Maximal “NOW" persuasion)
2) po(B) < 0.5 < Pr(s1|D) with high enough m4(s1|G)

unfavorable prior and not surprised = to-be not surprised (convinced about G)
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NOW vs. LATER: When the sender knows s, = s;

® Before Sender’s proposal, Receiver learns from s; that the probability of w is

Pr(w|si;D) = %

Remark 1 (What Receiver learns on his own from the first signal matters)
Fix Pr(si|D) > 0.5 > po(B). Then, "NOW" is better than "LATER" for any other
default model D’ such that Pr(s;|D’) = Pr(s1|D) and
2Pr(s;|D) — 1
Pr(s1|D)

PI’(GlSl;D/) >1-— NO(B) |:

Model-based persuasion timing problem is influenced by both

® the fit of Receiver’s initial interpretation of the first signal s

® what Receiver initially learns from it
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When the sender knows s, = s;

n(Noise|G)
1 —Noise = conclusive evidence of B
Sender knows s, = Noise
p” (Noise) = 100%
Noise = —Noise =
conclusive conclusive e D and D’ have same fit
evidence evidence
of G of G Pr(N|D) = Pr(N|D)
“LATER" is better for D
“NOW'" is better for D’
0 © Noise = conclusive evidence of B ’1 m(Noise|B)
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The impact of future data

Here's
current data |:| |:|

3

‘ Any surprise? \

If not, what do
you think now?




In short

“NOW" is better
® when the prior belief is very favorable (Proposition 1a)

Consistent with Schwartzstein and Sunderam (2021)

® when Sender knows s # 51 (Proposition 1b)

Diverse dataset benefits present persuasion but hurts future persuasion

® when Sender knows s, = s1, and (Proposition 2)

s1 initially moves Receiver’s belief toward the unfavorable state (w = Good)

Sender prevents sy from further convincing Receiver unfavorably
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Next Step

® Model setup (binary case)
® Period 2: Persuading LATER
® Period 1: Expected payoff of persuading LATER

® Period 1: Persuading NOW
e NOW vs. LATER

® When Sender knows the next signal with certainty

® When Sender does NOT know the next signal with certainty

¢ Period 0 related to Aina (2023) “Tailored Stories”
® Receiver sophistication: relaxing limited recall

¢ Finite states/signals



Appendix: When the sender doesn't know the next signal for sure

n(Noise|G)

~

Noise =
conclusive
evidence
of G

........

/so. £

line

—Noise =
conclusive
evidence
of G

M‘*
I\N

Noise = conclusive evidence of B

i{—»n(NoiselB)

p” (Noise) € (0,1)

J

°* My
7*(Noise|B) =1 —¢
7*(Noise|G) = 1

e Or
7*(Noise|B) > Pr(s1|D)

with binding constraint



Appendix: When the sender doesn't know the next signal for sure

Example
* po(B) =20%
® True model = Receiver's default model: purely random signals
w1 (Noise|B) = mwq(Noise| B) = w1 (Noise|G) = mq(Noise|G) = 0.5
® Expected payoff of persuading LATER:
E[V(“LATER")] = %(V(N, N) + V(N, ﬁ/v)) — 1(80% + 20%) = 50%

® Proposing “NOW"

7*(Noise|B) =1 —¢ and 7*(Noise|G) =1
yields the payoff
pT(N) -+ (1= pT(N))-1=50% -20% + 50% - 100% = 60%
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