Timing decision in model-based persuasion

Jun Hyun Ji

University of Pittsburgh

December 3, 2024

Motivation for model-based persuasion

Persuasion often involves an expert providing an <u>interpretation</u> of observed data —a model, a narrative, a relationship between state and data, etc.

- Debate on climate change/statistical facts/politics
- The defense and prosecution base their cases on the same evidence
- Engineers/mechanics provide different reasons for malfunctioning

DM seek/adopt expert's advice especially when data is surprising

- People initially interpret the data on their own
- Adopt a model that better fits the data

Does this mean Persuader should wait for unexpected data?

Motivation for timing decision

I focus on these aspects:

- 1. More data to come before DM chooses an action
- 2. Expert's opportunity to give advice is limited

Expert often decides when to persuade: before/after observing more data

- 3. Expert's interpretation needs to be consistent
 - e.g., (X) "This time is different", "Last year was a special case", etc.

Expert needs to provide a single model to interpret all data

—a model = a data generating process

Timeline

Prior Literature 1

KG (2011) Bayesian Persuasion

Prior Literature 2

Schwartzstein and Sunderam (2021) Using Models to Persuade

Prior Literature 2

Schwartzstein and Sunderam (2021) Using Models to Persuade

Trade off: Persuading "NOW" vs. "LATER"

If persuade LATER

Unexpected (surprising) data might arise

 \implies wait

• but it might indeed be unexpected \implies Say something now to prepare for the expected

Expected data might convince the receiver to take desired action \implies wait

• but it might convince him the other way \implies Say something now to prevent that

Assumptions- Sender (expert) and Receiver (client)

Sender (expert) and Receiver (client)

- Both do NOT know the true state
- Both do NOT know the true model
- Both know that the two signals are drawn independently from a fixed process

Sender

- Knows the true model "conditional on each state"
- Can only propose a model once
- Can only propose a single model

Assumptions- Receiver (client)

- Has a default model to interpret data
- Does NOT have a prior over models
- Adopts a proposed model if it generates the observed signal with higher likelihood —a model that better "fits" the data
- Does NOT consider Sender's incentives
- Limited recall
 - Once the proposed model is adopted, it is never abandoned
 - Once the default model is abandoned, it is never re-adopted

-the decision to adopt the proposal is taken immediately

Research Question

Timing of persuading a boundedly rational Bayesian's beliefs by manipulating her interpretation of two signals generated by the same process.

Is it always better to persuade after observing all signals?

No.

When?/How?

What matters:

- The prior belief
- Receiver's (default) interpretation of the first signal
- \star Sender's expectation about the next signal
- \star What Receiver learns on his own from the first signal

Outline

- Model setup (binary case)
- Period 2: Persuading LATER
- Period 1: Expected payoff of persuading LATER
- Period 1: Persuading NOW
- NOW vs. LATER
 - When Sender knows the next signal with certainty
 - When Sender does NOT know the next signal with certainty

Model Setup: Binary case

- State: $\omega \in \Omega = \{\textit{Good},\textit{Broken}\}$
- Receiver's prior belief $\mu_0 \in int(\Delta(\Omega))$

 $\omega_{\textit{true}}$ drawn from μ_0

- Signal: $s \in S = \{Noise, \neg Noise\}$
- Model $\mathcal{M}:$ distributions of signals conditional on each state

 $(\pi(s|\omega))_{s\in S,\omega\in\Omega} = (\pi(N|G),\pi(N|B)) \in [\Delta(S)]^{\Omega}$

- True model \mathcal{T} : $(\pi_T(N|G), \pi_T(N|B))$
- Receiver's default model \mathcal{D} : $(\pi_d(N|G), \pi_d(N|B))$
- Two signals $(s_1, s_2) \in \mathcal{S}^2$ drawn independently from $\mathcal{T}|\omega_{true}$
- *s*₁ = *Noise* is commonly observed

··· Game begins

Payoffs

Bayesian Receiver who observes s_2 (the second signal)

• updates belief
$$\mu_0 \to \underbrace{\mu(s_1, s_2; \mathcal{M}, \mu_0)}_{\text{posterior dist. over }\Omega}$$
 using model \mathcal{M}

Posterior belief about $\omega = B$

$$\mu(B|s_1, s_2; \mathcal{M}, \boldsymbol{\mu}_0) = \frac{\mu_0(B)\pi(s_1|B)\pi(s_2|B)}{\sum_{\omega \in \Omega} \mu_0(\omega)\pi(s_1|\omega)\pi(s_2|\omega)} \equiv \Pr(B|s_1, s_2; \mathcal{M}, \boldsymbol{\mu}_0)$$

Payoffs

Bayesian Receiver who observes s_2 (the second signal)

- updates belief $\mu_0 \to \underbrace{\mu(s_1, s_2; \mathcal{M}, \mu_0)}_{\text{posterior dist. over }\Omega}$ using model \mathcal{M}
- takes an action $a \in A$ that maximizes his expected utility

$$a^*(s_1, s_2; \mathcal{M}, \mu_0) \in \arg \max_{a \in \mathcal{A}} \mathbb{E}_{\mu(\omega|s_1, s_2; \mathcal{M}, \mu_0)} \left[U^R(a, \omega)
ight]$$

• Assume
$$A = [0,1]$$
 and $a^*(s_1,s_2;\mathcal{M},\mu_0) = \mathsf{Pr}(B|s_1,s_2;\mathcal{M},\mu_0)$

Sender maximizes the receiver's posterior belief about $\omega = B$:

$$\underbrace{\max_{\mathcal{M}} \mathbb{E}\left[\Pr(B|s_1, s_2; \mathcal{M}, \mu_0)\right]}_{\text{"NOW"}} \quad vs. \quad \underbrace{\max_{\mathcal{M}} \Pr(B|s_1, s_2; \mathcal{M}, \mu_0)}_{\text{"LATER"}}$$

(Henceforth, omit μ_0 in every notation.)

Objective of Analysis: NOW vs. LATER

When persuading "NOW", Receiver adopts ${\mathcal M}$ if

Model \mathcal{M} 's likelihood of s_1 is higher than that of the default model \mathcal{D}

$$\mathsf{Pr}(s_1|\mathcal{M}) \equiv \sum_{\omega \in \Omega} \mu_0(\omega) \pi(s_1|\omega) \geq \sum_{\omega \in \Omega} \mu_0(\omega) \pi_d(s_1|\omega) \equiv \mathsf{Pr}(s_1|\mathcal{D})$$

When persuading "LATER", Receiver adopts ${\cal M}$ if

Model \mathcal{M} 's likelihood of (s_1, s_2) is higher than that of the default model \mathcal{D}

$$\mathsf{Pr}(s_1, s_2 | \mathcal{M}) \equiv \sum_{\omega \in \Omega} \mu_0(\omega) \pi(s_1 | \omega) \pi(s_2 | \omega) \geq \sum_{\omega \in \Omega} \mu_0(\omega) \pi_d(s_1 | \omega) \pi_d(s_2 | \omega) \equiv \mathsf{Pr}(s_1, s_2 | \mathcal{D})$$

In both cases, Sender is proposing a model that better fits the *observed* data

LATER problem

$$V(s_1, s_2) \coloneqq \max_{\mathcal{M}} \Pr(B|s_1, s_2, \mathcal{M}) \quad \text{s.t.} \quad \Pr(s_1, s_2|\mathcal{M}) \ge \Pr(s_1, s_2|\mathcal{D})$$

$$= \max_{\mathcal{M}} \frac{\mu_0(B)\pi(s_1|B)\pi(s_2|B)}{\sum_{\omega \in \Omega} \mu_0(\omega)\pi(s_1|\omega)\pi(s_2|\omega)}$$

s.t.
$$\sum_{\omega \in \Omega} \mu_0(\omega) \pi(s_1|\omega) \pi(s_2|\omega) \ge \sum_{\omega \in \Omega} \mu_0(\omega) \pi_d(s_1|\omega) \pi_d(s_2|\omega)$$

$$\mathsf{Solution} = \arg\max_{\mathcal{M}} \left(\frac{\pi(s_1|B)\pi(s_2|B)}{\pi(s_1|G)\pi(s_2|G)} \right) \quad \mathsf{s.t.} \quad \mathsf{Pr}(s_1,s_2|\mathcal{M}) \geq \mathsf{Pr}(s_1,s_2|\mathcal{D})$$

LATER problem: Solution

Schwartzstein and Sunderam (2021)

If Sender can be inconsistent (propose a model for each period separately)

i.e.
$$\underset{\mathcal{M}^{t_1},\mathcal{M}^{t_2}}{\arg \max} \left(\frac{\pi^{t_1}(s_1|B)\pi^{t_2}(s_2|B)}{\pi^{t_1}(s_1|G)\pi^{t_2}(s_2|G)} \right) \quad \text{s.t.} \quad \mathsf{Pr}(s_1,s_2|\mathcal{M}^{t_1},\mathcal{M}^{t_2}) \geq \mathsf{Pr}(s_1,s_2|\mathcal{D})$$

•
$$\pi^{t_1*}(s_1|B)\pi^{t_2*}(s_2|B) = 100\% \quad \forall (s_1,s_2) \in \mathcal{S}^2$$

• $\pi^{t_1}(s_1|G)\pi^{t_2}(s_2|G)$ is as small as possible—binds the constraint

•
$$V(s_1, s_2) = \min \left\{ 100\%, \frac{\mu_0(B)}{\Pr(s_1, s_2 | D)} \right\}$$

Receiver finds the signals (s_1, s_2) more surprising \implies better persuasion

LATER problem: The cost of consistency

Mixed signals limit Sender's ability to confidently link the data to the desired state

• The best Sender can do is "In bad state, the signals are purely random"

Corollary 1 (The cost of consistency)

If Sender has to be consistent (propose a single model),

• $\pi^*(s_1|B)\pi^*(s_2|B) = \pi^*(s_1|B)(1 - \pi^*(s_1|B)) = \sqrt{50\%}$ if $s_1 \neq s_2$

•
$$V(s_1, s_2) = \begin{cases} \min \left\{ 100\%, \frac{\mu_0(B)}{\Pr(s_1, s_2|D)} \right\} & \text{if } s_1 = s_2 \\ \\ \min \left\{ 100\%, \frac{1}{4} \left(\frac{\mu_0(B)}{\Pr(s_1, s_2|D)} \right) \right\} & \text{if } s_1 \neq s_2 \end{cases}$$

LATER problem: Key Points

• Receiver's surprise \uparrow (poor fit) \Longrightarrow persuasion \uparrow

- The cost of being consistent
 - mixed signals \implies persuasion \downarrow by 1/4

• True model does not matter at all

- What Receiver learns on his own from the first signal does not matter
 - What matters is the "fit"

NOW problem

• Expected payoff of waiting (i.e., entering the LATER problem)

$$\mathbb{E}_{\mathcal{T}}\Big[V(s_1,s_2)\Big]$$

where Sender's (correct) expectation about s_2 conditional on s_1 based on \mathcal{T} :

$$\mathsf{Pr}(s_2|s_1,\mathcal{T}) = \frac{\mathsf{Pr}(s_1,s_2|\mathcal{T})}{\mathsf{Pr}(s_1|\mathcal{T})} = \frac{\sum_{\omega\in\Omega}\mu_0(\omega)\pi_{\mathcal{T}}(s_1|\omega)\pi_{\mathcal{T}}(s_2|\omega)}{\sum_{\omega\in\Omega}\mu_0(\omega)\pi_{\mathcal{T}}(s_1|\omega)}$$

Detail structure of the True model does not matter

Denote the expectation of the next signal:

$$ho^\mathcal{T}(s_1)\equiv \mathsf{Pr}(s_2=s_1|s_1,\mathcal{T}) \hspace{1em} ext{and} \hspace{1em} 1-
ho^\mathcal{T}(s_1)\equiv \mathsf{Pr}(s_2
eq s_1|s_1,\mathcal{T})$$

NOW problem

• Payoff of persuading "NOW"

$$V(s_1) \coloneqq \max_{\mathcal{M}} \mathbb{E}_{\rho^{\mathcal{T}}} \Big[\mathsf{Pr}(B|s_1, s_2, \mathcal{M}) \Big] \quad \text{s.t.} \quad \mathsf{Pr}(s_1|\mathcal{M}) \ge \mathsf{Pr}(s_1|\mathcal{D})$$

$$= \max_{\mathcal{M}} \sum_{s_2 \in S} \rho^{\mathcal{T}}(s_2) \left[\frac{\mu_0(B)\pi(s_1|B)\pi(s_2|B)}{\sum_{\omega \in \Omega} \mu_0(\omega)\pi(s_1|\omega)\pi(s_2|\omega)} \right]$$

s.t.
$$\sum_{\omega \in \Omega} \mu_0(\omega) \pi(s_1 | \omega) \ge \sum_{\omega \in \Omega} \mu_0(\omega) \pi_d(s_1 | \omega)$$

Maximal "NOW" Persuasion: convincing $\omega = B$ with 100%

Proposition 1 (Maximal "NOW" Persuasion)

Sender can achieve maximal persuasion "NOW" if either

(a)
$$\mu_0(B) > \Pr(s_1|\mathcal{D})$$
 or (b) $\rho^{\mathcal{T}}(s_1) = 0$

(a) The prior is very favorable compared to how much the default model ${\cal D}$ fits s_1

(b) Sender expects mixed signals $(s_1 \neq s_2)$ for certainty

When to stop acquiring more data

(a) also applies to "LATER" problem

• For any s at any point, $\mu_0(B) > \Pr(s|\mathcal{D})$ is enough to stop acquiring more data

Graphical Illustration: the set of all models

Graphical Illustration: the constraint

Graphical Illustration: Maximal Persuasion "NOW" (a)

Graphical Illustration: Maximal Persuasion "NOW" (b)

When the sender knows $s_2 = s_1$

• $\pi^*(s_1|B)$ is as small as possible—binds the constraint

When the sender knows $s_2 = s_1$

NOW vs. LATER: When the sender knows $s_2 = s_1$

Assumption 1 (Maximal "NOW" persuasion is not feasible)

 $\mu_0(B) < \Pr(s_1|\mathcal{D})$

Proposition 2 (NOW vs. LATER)

Suppose $\rho^{\mathcal{T}}(s_1) = 1$. Then, the followings are equivalent:

(a) "LATER" is better than "NOW"

i.e.,
$$V(s_1, s_1) \ge V(s_1)\Big|_{s_2=s_1}$$

(b) The optimal model for "NOW" is also feasible "LATER" (c) $Pr(s_1|D) \le \frac{1 + \pi_d(s_1|B)}{2}$

NOW vs. LATER: When the sender knows $s_2 = s_1$

Corollary 2

"LATER" is better if either

1) $\mu_0(B) < \Pr(s_1|\mathcal{D}) \le 0.5$

unfavorable prior but surprised \Longrightarrow to-be very surprised

2) $0.5 \le \mu_0(B) < \Pr(s_1|\mathcal{D})$

favorable prior and not surprised \implies to-be not surprised (convinced about B)

"NOW" is better if either

1) $\Pr(s_1|\mathcal{D}) \leq \mu_0(B)$

Proposition 1 (Maximal "NOW" persuasion)

2) $\mu_0(B) < 0.5 < \Pr(s_1|\mathcal{D})$ with high enough $\pi_d(s_1|G)$

unfavorable prior and not surprised \implies to-be not surprised (convinced about G)

NOW vs. LATER: When the sender knows $s_2 = s_1$

• Before Sender's proposal, Receiver learns from s_1 that the probability of ω is

$$\Pr(\omega|s_1; \mathcal{D}) \equiv \frac{\mu_0(\omega)\pi_d(s_1|\omega)}{\Pr(s_1|\mathcal{D})}$$

Remark 1 (What Receiver learns on his own from the first signal matters) Fix $Pr(s_1|D) > 0.5 > \mu_0(B)$. Then, "NOW" is better than "LATER" for any other default model D' such that $Pr(s_1|D') = Pr(s_1|D)$ and $Pr(G|s_1;D') \ge 1 - \mu_0(B) \left[\frac{2 Pr(s_1|D) - 1}{Pr(s_1|D)} \right]$

Model-based persuasion timing problem is influenced by both

- the fit of Receiver's initial interpretation of the first signal s1
- what Receiver initially learns from it

When the sender knows $s_2 = s_1$

The impact of future data

In short

"NOW" is better

• when the prior belief is very favorable

(Proposition 1a)

Consistent with Schwartzstein and Sunderam (2021)

• when Sender knows $s_2 \neq s_1$ (Proposition 1b)

Diverse dataset benefits present persuasion but hurts future persuasion

when Sender knows s₂ = s₁, and (Proposition 2)
 s₁ initially moves Receiver's belief toward the unfavorable state (ω = Good)
 Sender prevents s₂ from further convincing Receiver unfavorably

Next Step

- Model setup (binary case)
- Period 2: Persuading LATER
- Period 1: Expected payoff of persuading LATER
- Period 1: Persuading NOW
- NOW vs. LATER
 - When Sender knows the next signal with certainty
 - When Sender does NOT know the next signal with certainty
- Period 0 related to Aina (2023) "Tailored Stories"
- Receiver sophistication: relaxing limited recall
- Finite states/signals

Appendix: When the sender doesn't know the next signal for sure

Appendix: When the sender doesn't know the next signal for sure Example

• $\mu_0(B) = 20\%$

• True model = Receiver's default model: purely random signals $\pi_T(Noise|B) = \pi_d(Noise|B) = \pi_T(Noise|G) = \pi_d(Noise|G) = 0.5$

• Expected payoff of persuading LATER:

$$\mathbb{E}[V(\text{``LATER''})] = \frac{1}{2} \Big(V(N, N) + V(N, \neg N) \Big) = \frac{1}{2} (80\% + 20\%) = 50\%$$

Proposing "NOW"

$$\pi^*(\mathit{Noise}|B) = 1 - arepsilon$$
 and $\pi^*(\mathit{Noise}|G) = 1$

yields the payoff

$$\rho^{\mathcal{T}}(N) \cdot \mu + (1 - \rho^{\mathcal{T}}(N)) \cdot 1 = 50\% \cdot 20\% + 50\% \cdot 100\% = 60\%$$