
Timing decision in model-based persuasion

Jun Hyun Ji

University of Pittsburgh

December 3, 2024



Motivation for model-based persuasion

Persuasion often involves an expert providing an interpretation of observed data

—a model, a narrative, a relationship between state and data, etc.

• Debate on climate change/statistical facts/politics

• The defense and prosecution base their cases on the same evidence

• Engineers/mechanics provide different reasons for malfunctioning

DM seek/adopt expert’s advice especially when data is surprising

• People initially interpret the data on their own

• Adopt a model that better fits the data

Does this mean Persuader should wait for unexpected data?
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Motivation for timing decision

I focus on these aspects:

1. More data to come before DM chooses an action

2. Expert’s opportunity to give advice is limited

Expert often decides when to persuade: before/after observing more data

3. Expert’s interpretation needs to be consistent

e.g., (X) “This time is different”, “Last year was a special case”, etc.

Expert needs to provide a single model to interpret all data

—a model = a data generating process
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Example

Expert (an auto mechanic) – Client (Garrett’s father)
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Timeline
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Prior Literature 1
KG (2011) Bayesian Persuasion
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Prior Literature 2
Schwartzstein and Sunderam (2021) Using Models to Persuade
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Trade off: Persuading “NOW” vs. “LATER”

If persuade LATER

Unexpected (surprising) data might arise =⇒ wait

• but it might indeed be unexpected =⇒ Say something now to prepare for the expected

Expected data might convince the receiver to take desired action =⇒ wait

• but it might convince him the other way =⇒ Say something now to prevent that
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Assumptions– Sender (expert) and Receiver (client)

Sender (expert) and Receiver (client)

• Both do NOT know the true state

• Both do NOT know the true model

• Both know that the two signals are drawn independently from a fixed process

Sender

• Knows the true model “conditional on each state”

• Can only propose a model once

• Can only propose a single model
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Assumptions– Receiver (client)

• Has a default model to interpret data

• Does NOT have a prior over models

• Adopts a proposed model if it generates the observed signal with higher likelihood

—a model that better “fits” the data

• Does NOT consider Sender’s incentives

• Limited recall

• Once the proposed model is adopted, it is never abandoned

• Once the default model is abandoned, it is never re-adopted

—the decision to adopt the proposal is taken immediately
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Research Question

Timing of persuading a boundedly rational Bayesian’s beliefs

by manipulating her interpretation of two signals generated by the same process.

Is it always better to persuade after observing all signals? No.

When?/How?

What matters:

• The prior belief

• Receiver’s (default) interpretation of the first signal

? Sender’s expectation about the next signal

? What Receiver learns on his own from the first signal
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Outline

• Model setup (binary case)

• Period 2: Persuading LATER

• Period 1: Expected payoff of persuading LATER

• Period 1: Persuading NOW

• NOW vs. LATER

• When Sender knows the next signal with certainty

• When Sender does NOT know the next signal with certainty
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Model Setup: Binary case

• State: ω ∈ Ω = {Good ,Broken}

• Receiver’s prior belief µ0 ∈ int(∆(Ω)) ωtrue drawn from µ0

• Signal: s ∈ S = {Noise,¬Noise}

• Model M: distributions of signals conditional on each state

(π(s|ω))s∈S ,ω∈Ω = (π(N|G ), π(N|B)) ∈ [∆(S)]Ω

• True model T : (πT (N|G ), πT (N|B))

• Receiver’s default model D: (πd(N|G ), πd(N|B))

• Two signals (s1, s2) ∈ S2 drawn independently from T |ωtrue

• s1 = Noise is commonly observed · · · Game begins
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Payoffs

Bayesian Receiver who observes s2 (the second signal)

• updates belief µ0 → µ(s1, s2;M,µ0)︸ ︷︷ ︸
posterior dist. over Ω

using model M

Posterior belief about ω = B

µ(B|s1, s2;M,µ0) =
µ0(B)π(s1|B)π(s2|B)∑
ω∈Ω µ0(ω)π(s1|ω)π(s2|ω)

≡ Pr(B|s1, s2;M,µ0)
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Payoffs

Bayesian Receiver who observes s2 (the second signal)

• updates belief µ0 → µ(s1, s2;M,µ0)︸ ︷︷ ︸
posterior dist. over Ω

using model M

• takes an action a ∈ A that maximizes his expected utility

a∗(s1, s2;M,µ0) ∈ arg max
a∈A

Eµ(ω|s1,s2;M,µ0)

[
UR(a, ω)

]
• Assume A = [0, 1] and a∗(s1, s2;M,µ0) = Pr(B|s1, s2;M,µ0)

Sender maximizes the receiver’s posterior belief about ω = B:

max
M

E [Pr(B|s1, s2;M,µ0)]︸ ︷︷ ︸
“NOW”

vs. max
M

Pr(B|s1, s2;M,µ0)︸ ︷︷ ︸
“LATER’

(Henceforth, omit µ0 in every notation.)
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Objective of Analysis: NOW vs. LATER

When persuading “NOW”, Receiver adopts M if

Model M’s likelihood of s1 is higher than that of the default model D
Pr(s1|M) ≡

∑
ω∈Ω

µ0(ω)π(s1|ω) ≥
∑
ω∈Ω

µ0(ω)πd(s1|ω) ≡ Pr(s1|D)

When persuading “LATER”, Receiver adopts M if

Model M’s likelihood of (s1, s2) is higher than that of the default model D

Pr(s1, s2|M) ≡
∑
ω∈Ω

µ0(ω)π(s1|ω)π(s2|ω) ≥
∑
ω∈Ω

µ0(ω)πd(s1|ω)πd(s2|ω) ≡ Pr(s1, s2|D)

In both cases, Sender is proposing a model that better fits the observed data
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LATER problem

V (s1, s2) := max
M

Pr(B|s1, s2,M) s.t. Pr(s1, s2|M) ≥ Pr(s1, s2|D)

= max
M

µ0(B)π(s1|B)π(s2|B)∑
ω∈Ω µ0(ω)π(s1|ω)π(s2|ω)

s.t.
∑
ω∈Ω

µ0(ω)π(s1|ω)π(s2|ω) ≥
∑
ω∈Ω

µ0(ω)πd(s1|ω)πd(s2|ω)

Solution = arg max
M

(
π(s1|B)π(s2|B)

π(s1|G )π(s2|G )

)
s.t. Pr(s1, s2|M) ≥ Pr(s1, s2|D)
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LATER problem: Solution

Schwartzstein and Sunderam (2021)

If Sender can be inconsistent (propose a model for each period separately)

i .e. arg max
Mt1 ,Mt2

(
πt1(s1|B)πt2(s2|B)

πt1(s1|G )πt2(s2|G )

)
s.t. Pr(s1, s2|Mt1 ,Mt2) ≥ Pr(s1, s2|D)

• πt1∗(s1|B)πt2∗(s2|B) = 100% ∀(s1, s2) ∈ S2

• πt1(s1|G )πt2(s2|G ) is as small as possible—binds the constraint

• V (s1, s2) = min

{
100%,

µ0(B)

Pr(s1, s2|D)

}
Receiver finds the signals (s1, s2) more surprising =⇒ better persuasion
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LATER problem: The cost of consistency

Mixed signals limit Sender’s ability to confidently link the data to the desired state

• The best Sender can do is “In bad state, the signals are purely random”

Corollary 1 (The cost of consistency)

If Sender has to be consistent (propose a single model),

• π∗(s1|B)π∗(s2|B) = π∗(s1|B)(1− π∗(s1|B)) =
√

50% if s1 6= s2

• V (s1, s2) =


min

{
100%,

µ0(B)

Pr(s1, s2|D)

}
if s1 = s2

min

{
100%,

1

4

(
µ0(B)

Pr(s1, s2|D)

)}
if s1 6= s2
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LATER problem: Key Points

• Receiver’s surprise ↑ (poor fit) =⇒ persuasion ↑

• The cost of being consistent

• mixed signals =⇒ persuasion ↓ by 1/4

• True model does not matter at all

• What Receiver learns on his own from the first signal does not matter

• What matters is the “fit”
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NOW problem

• Expected payoff of waiting (i.e., entering the LATER problem)

ET
[
V (s1, s2)

]
where Sender’s (correct) expectation about s2 conditional on s1 based on T :

Pr(s2|s1, T ) =
Pr(s1, s2|T )

Pr(s1|T )
=

∑
ω∈Ω µ0(ω)πT (s1|ω)πT (s2|ω)∑

ω∈Ω µ0(ω)πT (s1|ω)

Detail structure of the True model does not matter

Denote the expectation of the next signal:

ρT (s1) ≡ Pr(s2 = s1|s1, T ) and 1− ρT (s1) ≡ Pr(s2 6= s1|s1, T )
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NOW problem

• Payoff of persuading “NOW”

V (s1) := max
M

EρT
[

Pr(B|s1, s2,M)
]

s.t. Pr(s1|M) ≥ Pr(s1|D)

= max
M

∑
s2∈S

ρT (s2)

[
µ0(B)π(s1|B)π(s2|B)∑
ω∈Ω µ0(ω)π(s1|ω)π(s2|ω)

]

s.t.
∑
ω∈Ω

µ0(ω)π(s1|ω) ≥
∑
ω∈Ω

µ0(ω)πd(s1|ω)
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Maximal “NOW” Persuasion: convincing ω = B with 100%

Proposition 1 (Maximal “NOW” Persuasion)

Sender can achieve maximal persuasion “NOW” if either

(a) µ0(B) > Pr(s1|D) or (b) ρT (s1) = 0

(a) The prior is very favorable compared to how much the default model D fits s1

(b) Sender expects mixed signals (s1 6= s2) for certainty

When to stop acquiring more data

(a) also applies to “LATER” problem

• For any s at any point, µ0(B) > Pr(s|D) is enough to stop acquiring more data
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Graphical Illustration: the set of all models

• The set of all models

• Models on edges
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Graphical Illustration: the constraint

Iso-fit line

Pr(Noise|M) = Pr(Noise|D)

• Slope = −
(

1−µ0(B)
µ0(B)

)
• Default model D
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Graphical Illustration: Maximal Persuasion “NOW” (a)

Favorable prior

µ0(B) > Pr(Noise|D)

• The optimal model M∗

π∗(Noise|B) < 1

π∗(Noise|G ) = 0

“Noise means red light! Just

as you suspected, this

tractor needs a repair for

sure.”
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Graphical Illustration: Maximal Persuasion “NOW” (b)

Sender knows s2 = ¬Noise
ρT (Noise) = 0

• The optimal model M∗

π∗(Noise|B) < 1

π∗(Noise|G ) = 1

“Noise is probably nothing

serious. But if the noise ever

stops, that’s a flashing red

light.”

22 / 29



When the sender knows s2 = s1

Lemma 1 (Optimal model for “NOW” when Sender knows s2 = s1)

Suppose ρT (s1) = 1. Then,

• V (s1) increases in
µ0(B)

Pr(s1|D)

• The optimal model for “NOW” is

π∗(s1|B) = 100% and π∗(s1|G ) = max

{
0,

Pr(s1|D)− µ0(B)

1− µ0(B)

}

• π∗(s1|B) is as small as possible—binds the constraint
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When the sender knows s2 = s1

Sender knows s2 = Noise

ρT (Noise) = 100%

• The optimal model M∗

π∗(Noise|B) = 1

with binding constraint

“If it’s in good shape, you

should probably hear

nothing”
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NOW vs. LATER: When the sender knows s2 = s1

Assumption 1 (Maximal “NOW” persuasion is not feasible)

µ0(B) < Pr(s1|D)

Proposition 2 (NOW vs. LATER)

Suppose ρT (s1) = 1. Then, the followings are equivalent:

(a) “LATER” is better than “NOW”

i.e., V (s1, s1) ≥ V (s1)
∣∣∣
s2=s1

(b) The optimal model for “NOW” is also feasible “LATER”

(c) Pr(s1|D) ≤ 1 + πd(s1|B)

2
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NOW vs. LATER: When the sender knows s2 = s1

Corollary 2

“LATER” is better if either

1) µ0(B) < Pr(s1|D) ≤ 0.5

unfavorable prior but surprised =⇒ to-be very surprised

2) 0.5 ≤ µ0(B) < Pr(s1|D)

favorable prior and not surprised =⇒ to-be not surprised (convinced about B)

“NOW” is better if either

1) Pr(s1|D) ≤ µ0(B)

Proposition 1 (Maximal “NOW” persuasion)

2) µ0(B) < 0.5 < Pr(s1|D) with high enough πd(s1|G )

unfavorable prior and not surprised =⇒ to-be not surprised (convinced about G)
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NOW vs. LATER: When the sender knows s2 = s1

• Before Sender’s proposal, Receiver learns from s1 that the probability of ω is

Pr(ω|s1;D) ≡ µ0(ω)πd(s1|ω)

Pr(s1|D)

Remark 1 (What Receiver learns on his own from the first signal matters)

Fix Pr(s1|D) > 0.5 > µ0(B). Then, “NOW” is better than “LATER” for any other

default model D′ such that Pr(s1|D′) = Pr(s1|D) and

Pr(G |s1;D′) ≥ 1− µ0(B)

[
2 Pr(s1|D)− 1

Pr(s1|D)

]

Model-based persuasion timing problem is influenced by both

• the fit of Receiver’s initial interpretation of the first signal s1

• what Receiver initially learns from it
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When the sender knows s2 = s1

Sender knows s2 = Noise

ρT (Noise) = 100%

• D and D′ have same fit

Pr(N|D) = Pr(N|D′)

“LATER” is better for D
“NOW” is better for D′
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The impact of future data



In short

“NOW” is better

• when the prior belief is very favorable (Proposition 1a)

Consistent with Schwartzstein and Sunderam (2021)

• when Sender knows s2 6= s1 (Proposition 1b)

Diverse dataset benefits present persuasion but hurts future persuasion

• when Sender knows s2 = s1, and (Proposition 2)

s1 initially moves Receiver’s belief toward the unfavorable state (ω = Good)

Sender prevents s2 from further convincing Receiver unfavorably
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Next Step

• Model setup (binary case)

• Period 2: Persuading LATER

• Period 1: Expected payoff of persuading LATER

• Period 1: Persuading NOW

• NOW vs. LATER

• When Sender knows the next signal with certainty

• When Sender does NOT know the next signal with certainty

• Period 0 related to Aina (2023) “Tailored Stories”

• Receiver sophistication: relaxing limited recall

• Finite states/signals



Appendix: When the sender doesn’t know the next signal for sure

ρT (Noise) ∈ (0, 1)

• M∗¬N
π∗(Noise|B) = 1− ε
π∗(Noise|G ) = 1

• Or

π∗(Noise|B) > Pr(s1|D)

with binding constraint



Appendix: When the sender doesn’t know the next signal for sure
Example

• µ0(B) = 20%

• True model = Receiver’s default model: purely random signals

πT (Noise|B) = πd(Noise|B) = πT (Noise|G ) = πd(Noise|G ) = 0.5

• Expected payoff of persuading LATER:

E[V (“LATER”)] = 1
2

(
V (N,N) + V (N,¬N)

)
= 1

2 (80% + 20%) = 50%

• Proposing “NOW”

π∗(Noise|B) = 1− ε and π∗(Noise|G ) = 1

yields the payoff

ρT (N) · µ+ (1− ρT (N)) · 1 = 50% · 20% + 50% · 100% = 60%
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